Package: HuraultMisc 1.1.2.9000

HuraultMisc: Guillem Hurault Functions' Library

Contains various functions for data analysis, notably helpers and diagnostics for Bayesian modelling using Stan.

Authors:Guillem Hurault [aut, cre]

HuraultMisc_1.1.2.9000.tar.gz
HuraultMisc_1.1.2.9000.zip(r-4.5)HuraultMisc_1.1.2.9000.zip(r-4.4)HuraultMisc_1.1.2.9000.zip(r-4.3)
HuraultMisc_1.1.2.9000.tgz(r-4.5-any)HuraultMisc_1.1.2.9000.tgz(r-4.4-any)HuraultMisc_1.1.2.9000.tgz(r-4.3-any)
HuraultMisc_1.1.2.9000.tar.gz(r-4.5-noble)HuraultMisc_1.1.2.9000.tar.gz(r-4.4-noble)
HuraultMisc_1.1.2.9000.tgz(r-4.4-emscripten)HuraultMisc_1.1.2.9000.tgz(r-4.3-emscripten)
HuraultMisc.pdf |HuraultMisc.html
HuraultMisc/json (API)
NEWS

# Install 'HuraultMisc' in R:
install.packages('HuraultMisc', repos = c('https://ghurault.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/ghurault/huraultmisc/issues

Pkgdown site:https://ghurault.github.io

Datasets:

On CRAN:

bayesian-statisticsdata-analysisstatistical-models

2.95 score 18 scripts 265 downloads 34 exports 94 dependencies

Last updated 3 months agofrom:af20fb4e7a. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 03 2025
R-4.5-winOKFeb 03 2025
R-4.5-macOKFeb 03 2025
R-4.5-linuxOKFeb 03 2025
R-4.4-winOKFeb 03 2025
R-4.4-macOKFeb 03 2025
R-4.3-winOKFeb 03 2025
R-4.3-macOKFeb 03 2025

Exports:%>%%~%approx_equalchange_colnamescheck_model_sensitivitycombine_prior_posteriorcompute_calibrationcompute_coveragecompute_prior_influencecompute_resolutioncompute_RPScompute_rsquaredempirical_pvalextract_ciextract_distributionextract_drawsextract_index_ndextract_parameters_from_drawextract_pdfextract_pmffactor_to_numericinv_logitis_scalaris_scalar_wholenumberis_stanfitis_wholenumberlogitplot_coverageplot_prior_influenceplot_prior_posteriorpost_pred_pvalPPC_group_distributionprocess_replicationssummary_statistics

Dependencies:abindbackportsbase64encBHbslibcachemcallrcheckmatecliclustercolorspacecpp11data.tabledescdigestdistributionaldplyrevaluatefansifarverfastmapfontawesomeforeignFormulafsgenericsggplot2gluegridExtragtableHDIntervalhighrHmischtmlTablehtmltoolshtmlwidgetsinlineisobandjquerylibjsonliteknitrlabelinglatticelifecycleloomagrittrMASSMatrixmatrixStatsmemoisemgcvmimemunsellnlmennetnumDerivpillarpkgbuildpkgconfigplyrposteriorprocessxpspurrrQuickJSRR6rappdirsRColorBrewerRcppRcppEigenRcppParallelreshape2rlangrmarkdownrpartrstanrstudioapisassscalesStanHeadersstringistringrtensorAtibbletidyrtidyselecttinytexutf8vctrsviridisviridisLitewithrxfunyaml

Readme and manuals

Help Manual

Help pageTopics
Approximate equal%~% approx_equal
A colour blind friendly palette (with black)cbbPalette
Change column names of a dataframechange_colnames
Estimate calibration given forecasts and corresponding outcomescompute_calibration
Compute resolution of forecasts, normalised by the uncertaintycompute_resolution
Compute RPS for a single forecastcompute_RPS
Compute Bayesian R-squared from matrix of posterior replicationscompute_rsquared
Coverage probabilitycompute_coverage coverage plot_coverage
Compute empirical p-valuesempirical_pval
Extract confidence intervals from a vector of samplesextract_ci
Extract a distribution represented by samplesextract_distribution
Extract parameters' drawsextract_draws
Extract multiple indices inside bracket(s) as a listextract_index_nd
Extract parameters from a single drawextract_parameters_from_draw
Extract probability density function from vector of samplesextract_pdf
Extract probability mass function from vector of samplesextract_pmf
Change the type of the column of a dataframe from factor to numericfactor_to_numeric
Test whether x is of length 1is_scalar
Test whether an object is of class "stanfit"is_stanfit
Test whether x is a whole numberis_scalar_wholenumber is_wholenumber
Logit and Inverse logitinv_logit logit
Posterior Predictive p-valuepost_pred_pval
Posterior Predictive Check for Stan modelPPC_group_distribution
Compare prior to posteriorcheck_model_sensitivity combine_prior_posterior compute_prior_influence plot_prior_influence plot_prior_posterior prior_posterior
Extract posterior predictive distributionprocess_replications
Extract summary statisticssummary_statistics